Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Thorsten Morawitz, ${ }^{\text {a }}$ Hans-Wolfram Lerner, ${ }^{\text {a }}$ Miriam Bru Roig ${ }^{\text {b }}$ and Michael Bolte ${ }^{\text {a }}$

${ }^{\mathrm{a}}$ Institut für Anorganische Chemie, J. W. GoetheUniversität Frankfurt, Marie-Curie-Strasse 11, 60439 Frankfurt/Main, Germany, and ${ }^{\text {b }}$ DeparDepartament de Química Inorgànica i Orgànica, University Jaume I, Campus Riu Sec, Avenida Sos Baynat $\mathrm{s} / \mathrm{n}, 12071$ Castellon de la Plana, Spain

Correspondence e-mail:
bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.039$
$w R$ factor $=0.105$
Data-to-parameter ratio $=17.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

1,1,4,7,7-Pentamethyldiethylenetriammonium bis(hexafluorophosphate)

The title compound, $\mathrm{C}_{9} \mathrm{H}_{25} \mathrm{~N}_{3}{ }^{2+} \cdot 2 \mathrm{PF}_{6}{ }^{-}$, consists of discrete hexafluorophosphate anions and 1,1,4,7,7-pentamethyldiethylenetriamine cations. The geometric parameters are in the usual ranges. Only one $\mathrm{PF}_{6}{ }^{-}$cation forms hydrogen bonds with both NH donors of the cation.

Comment

We are interested in the synthesis of transition metal complexes with 1,1,4,7,7-pentamethyldiethylenetriamine (PMDTA) as a ligand (Margraf et al., 2005). In an attempt to prepare an iron(III) complex with PMDTA and hexafluorophosphate as counter-ion, as shown in the reaction scheme below, we obtained the title compound, (I).

$$
2 \mathrm{PF}_{6}^{-}
$$

Received 24 November 2005 Accepted 25 November 2005 Online 30 November 2005

A perspective view of (I) is shown in Fig. 1. Bond lengths and angles can be regarded as normal (Cambridge Structural Database, Version 1.6 plus three updates; $M O G U L$ Version 1.0; Allen, 2002).

The title compound crystallizes with discrete hexafluorophosphate anions and 1,1,4,7,7-pentamethyldiethylenetriamine cations. Both $\mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{N}$ linkages of the cation adopt a gauche conformation. Only one $\mathrm{PF}_{6}{ }^{-}$cation forms hydrogen bonds with both NH donors of the cation. The $\mathrm{P}-\mathrm{F}$ bonds in this anion are significantly different (Table 1). The F atom forming two hydrogen bonds shows the longest $\mathrm{P}-\mathrm{F}$ bond. The $\mathrm{P}-\mathrm{F}$ bonds involving the F atoms forming only one hydrogen bond are slightly longer than the remaining three. In the other cation, however, all the $\mathrm{P}-\mathrm{F}$ bonds are of almost the same length.

Experimental

PMDTA (1.52 mmol) was added to a solution of $\mathrm{Fe}\left(\mathrm{PF}_{6}\right)_{3}$ (1.52 mmol) in acetonitrile. Colourless crystals of the title compound
suitable for X-ray diffraction were grown by slow diffusion of diethyl ether into an acetonitrile solution at ambient temperature.

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{25} \mathrm{~N}_{3}{ }^{2+} .2 \mathrm{PF}_{6}{ }^{-}$
$M_{r}=465.26$
Monoclinic, $P 2_{h} / c$
$a=8.7310$ (5) A
$b=12.7348$ (5) \AA
$c=17.2366$ (10) A
$\beta=99.440$ (5) ${ }^{\circ}$
$V=1890.54(17) \AA^{3}$
$Z=4$

Data collection

Stoe IPDS-II two-circle diffractometer
ω scans
Absorption correction: multi-scan
(MULABS; Spek, 2003;
Blessing, 1995)
$T_{\text {min }}=0.850, T_{\text {max }}=0.881$
26656 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.105$
$S=1.11$
4201 reflections
244 parameters
H atoms treated by a mixture of independent and constrained refinement
$D_{x}=1.635 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 26656 reflections
$\theta=2.0-27.5^{\circ}$
$\mu=0.34 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Block, colourless
$0.49 \times 0.48 \times 0.38 \mathrm{~mm}$

4201 independent reflections
4042 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.074$
$\theta_{\text {max }}=27.2^{\circ}$
$h=-11 \rightarrow 11$
$k=-15 \rightarrow 16$
$l=-22 \rightarrow 22$

$$
\begin{aligned}
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.048 P)^{2}\right. \\
\quad \\
\quad+0.8541 P] \\
\quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.46 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.35 \mathrm{e}^{-3} \\
\text { Extinction correction: } \text { SHELXL97 } \\
\text { Extinction coefficient: } 0.021
\end{array} \text { (3) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

P1-F11	$1.5842(13)$	P2-F24	$1.5989(10)$
P1-F14	$1.5874(11)$	P2-F22	$1.6026(11)$
P1-F15	$1.5957(11)$	P2-F23	$1.6029(11)$
P1-F13	$1.5987(12)$	P2-F26	$1.6050(10)$
P1-F12	$1.6062(12)$	P2-F25	$1.6055(10)$
P1-F16	$1.6262(10)$	P2-F21	$1.6087(11)$
N1-C2-C3-N4	$52.69(18)$	N4-C5-C6-N7	$-52.33(17)$

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1 \cdots F16	$0.88(2)$	$2.18(2)$	$2.9590(16)$	$146(2)$
N1-H1 F12	$0.88(2)$	$2.49(2)$	$3.1482(18)$	$132(2)$
N7-H7 F16	$0.85(2)$	$2.21(2)$	$2.9502(16)$	$145(2)$
N7-H7 FF13	$0.85(2)$	$2.40(2)$	$3.0883(17)$	$139(2)$

H atoms were located in a difference map, but those bonded to C were refined with fixed individual displacement parameters $\left[U_{\text {iso }}(\mathrm{H})\right.$ $=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}$ (methyl C)] using a riding model, with $\mathrm{C}-\mathrm{H}=$ 0.98 and $0.99 \AA$, for methyl and methylene H atoms, respectively. H atoms bonded to N were refined isotropically.

Figure 1
Perspective view of the title compound, with the atom-numbering scheme; displacement ellipsoids are drawn at the 50% probability level; hydrogen bonds are shown as dashed lines.

Figure 2
Packing diagram of the title compound, viewed on to the ac plane; H atoms have been omitted for clarity.

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991) and MERCURY (Bruno et al., 2002); software used to prepare material for publication: SHELXL97.

MBR thanks MECD for personal financial support (FPU Program).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. \& Taylor, R. (2002). Acta Cryst. B58, 389-397.
Margraf, G., Bats, J. W., Wagner, M. \& Lerner, H.-W. (2005). Inorg. Chim. Acta, 358, 1193-1203.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical Xray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stoe \& Cie (2001). X-AREA. Stoe \& Cie, Darmstadt, Germany.

